

FACULDADE SATC ENGENHARIA MECÂNICA

RELATÓRIO DE ESTÁGIO DE ENGENHARIA MECÂNICA NO DESENVOLVIMENTO EM UMA MÁQUINA DE ENSAIO DE RUPTURA

Eduardo Amante

Criciúma Março, 2020

Eduardo Amante

RELATÓRIO DE ESTÁGIO DE ENGENHARIA MECÂNICA NO DESENVOLVIMENTO EM UMA MÁQUINA DE ENSAIO DE RUPTURA

Relatório de Estágio apresentado ao Curso de Engenharia Mecânica da Faculdade SATC, como requisito parcial à obtenção do título de Engenheiro Mecânico.

José/Antônio Amante

Reginaldo Rosso Marcello, Me. Eng.

Criciúma,

Novembro, 2020

AGRADECIMENTOS

Primeiramente a Deus,

À empresa Servitech Serviços Técnicos e Representações, por ter disponibilizado essa oportunidade de estágio, para o meu aperfeiçoamento profissional e pessoal.

Aos funcionários da Servitech Serviços Técnicos e Representações, que me poiaram e fizeram o possível para me ajudar durante o estágio. Aos colegas do curso de engenharia mecânica da SATC, pelas experiências trocadas e conhecimentos adquiridos. Aos funcionários da faculdade SATC que me ajudaram direta ou indiretamente e partilharam seus conhecimentos ao longo da minha formação profissional.

E por fim, a minha mãe Valdea L. Amante, meu pai José Antônio Amante, meus irmãos Rafael Amante e Heloisa Amante e a minha amada esposa Caroline S. Mendes que sempre me apoiaram em todas as decisões da minha vida e esperaram ansiosamente por esse momento.

RESUMO

O presente relatório descreve as atividades desenvolvidas durante o período de estágio curricular obrigatório realizado no setor de desenvolvimento da empresa Servitech Serviços Técnicos e Representações Ltda. A mais de 30 anos no mercado, a empresa hoje está focada na produção e desenvolvimento de máquinas e equipamentos para a indústria cerâmica com destaque nos setores de linhas de esmaltação e equipamento de controle de qualidade. A principal atividade realizada ao decorrer do estágio foi a modificação do projeto de um flexímetro, produto projetado para realizar ensaios de ruptura em pisos cerâmicos com a introdução de um sensor para medir o deslocamento do dispositivo de quebra e um sistema de aquisição de dados capaz de comunicar com a placa de aquisição de dados do equipamento.

Palavras-chave: Equipamentos Cerâmicos, Projetos, Flexímetro.

LISTA DE ILUSTRAÇÕES

FIGURA 1 – (A) UNIDADE TUBARÃO/SC, (B) SANTA GERTRUDES/SP (SERVITECH, 2020)	9
Figura 2– Flexímetro Servitech (Servitech, 2020)	10
Figura 3 - Ensaio de flexão (Autor, 2020)	10
Figura 4 - Modelo 3d do suporte do sensor (Servitech, 2020)	13
FIGURA 5 - SENSOR INSTALADO NA MÁQUINA (SERVITECH, 2020)	13
Figura 6 - Função de transferência (Autor, 2020)	15
Figura 7 - Função de transferência (Autor, 2020)	16
Figura 8 - Diagrama DAQ (Autor, 2020)	16
FIGURA 9 – (A)INTERFACE DO USUÁRIO, (B) FLUXO DADOS (AUTOR, 2020)	17

LISTA DE TABELAS

TABELA 1- RELAÇÃO DE COMPONENTES (AUTOR, 2020)	12
Tabela 2 - Tensão x Carga (Autor, 2020)	14
Tabela 3 - Dados do transdutor deslocamento (Autor, 2020)	15

LISTA DE ABREVIAÇÕES

SIGLAS

SATC – Associação Beneficente da Indústria Carbonífera Catarinense;

ISO – International Organization for Standardization;

ABNT - Associação Brasileira de Normas Técnicas;

DAQ – Data Acquisition (Aquisição de dados);

Vcc - Tensão em corrente contínua;

PWM – Pulse width modulation (Modulação por largura de pulso).

SUMÁRIO

RESUMO	3
LISTA DE ILUSTRAÇÕES	4
LISTA DE TABELAS	5
LISTA DE ABREVIAÇÕES	6
1. INTRODUÇÃO	8
1.2 A EMPRESA	8
2. ATIVIDADES DESENVOLVIDAS	10
2.1. SELEÇÃO DO SISTEMA DE MEDIDA	11
2.2. SUPORTE PARA TRANSDUTOR	12
2.3. EQUAÇÃO DE TRANSFERENCIA	14
2.3.1. CELULA DE CARGA	14
2.3.2. ENCODER LINEAR	15
2.4. SOFTWARE DE AQUISIÇÃO DE DADOS	16
3. CONCLUSÃO	18
4. REFERÊNCIAS BIBLIOGRÁFICAS	19

1. INTRODUÇÃO

Atualmente, no mercado, existem várias opções de produtos para cobertura de edificações. São diversos modelos, tamanhos e espessuras e a sua escolha vai depender do tipo de edificação e das vantagens e desvantagens de cada sistema de cobertura.

No que diz respeito a cobertura com telhas de fibrocimento, elas estão entre as mais utilizadas principalmente na cobertura de edificações comerciais, industriais, rurais e moradias populares, isto se deve, principalmente a possibilidade de vencer grandes vãos sem o uso de apoios intermediários e ao baixo custo.

Para determinar a confiabilidade e segurança no uso destes produtos, várias exigências devem ser atendidas e entre elas está o ensaio de flexão que é utilizado para determinar as propriedades de Resistência à Flexão, Módulo de Elasticidade, Deformação sob Flexão. Essas propriedades são importantes para o controle de qualidade e para avaliar o desempenho dos materiais.

Para realização este ensaio, a Servitech fabrica atualmente o flexímetro até o presente momento destinado exclusivamente para ensaios em placas cerâmicas de revestimento em pisos e paredes. O uso deste produto em telhas de fibrocimento, exige uma adequação do equipamento, assim como a inclusão de um novo sensor para determinar a flecha na ruptura da flexão e um sistema de aquisição de dados.

1.2 A Empresa

Fundada em maio de 1990 na cidade de Tubarão - Santa Catarina, a Servitech Serviços técnicos e representações Ltda, Fig. 1(a), conquistou clientes e parceiros em todo o Brasil e américa latina, tornando-se referência de qualidade na fabricação de equipamentos para indústria cerâmica, laboratoriais de controle de qualidade e em prestação de serviços.

A Servitech possui uma ampla linha de equipamentos para indústrias cerâmicas e laboratórios de controle de qualidade em argilas. Sua divisão de equipamentos mantém as mais conceituadas máquinas, componentes e instrumentos de produção e controle de qualidade ao dispor do mercado mundial. A Servitech possui também

parcerias com empresas estrangeiras representando, vendendo seus produtos e prestando a assistência técnica no Brasil.

Em setembro de 1997 foi instalada na cidade de Santa Gertrudes (Região de Rio Claro) - São Paulo, Fig. 1(b), sua filial, acreditando no potencial do que hoje é o maior polo cerâmico de pisos e azulejos do Brasil, contando com uma forte estrutura comercial e assistência técnica.

Figura 1 – (a) Unidade Tubarão/SC, (b) Santa Gertrudes/SP (Servitech, 2020)

2. ATIVIDADES DESENVOLVIDAS

A principal atividade realizada na empresa Servitech foi a adaptação e melhoria de um equipamento já existente no portifólio de produtos da empresa. Este aparelho Fig. 2 consiste no ensaio de flexão em placas cerâmicas e atende a norma NBR 13818 e ISO 10545.

Figura 2– Flexímetro Servitech (Servitech, 2020)

Este ensaio consiste na aplicação de uma carga controlada sobre a face de uma placa cerâmica bi apoiada Fig. 3. Os dados coletados são utilizados para determinar as propriedades de resistência a flexão, propriedades que são importantes para o controle de qualidade e para avaliar o desempenho dos materiais quando submetidos a uma carga.

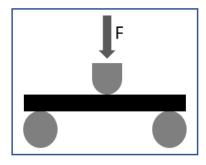


Figura 3 - Ensaio de flexão (Autor, 2020)

A ampliação consiste na adição de um sensor de deslocamento ao dispositivo que aplica a força sobre a amostra, um sistema de aquisição de dados para registrar a força e o deslocamento durante a prova e apresentar os resultados obtidos no teste. Isto se faz necessário para que o mesmo equipamento atenda outras normas de qualidade vigentes na indústria como a NBR15210-2 para o uso em telhas de fibrocimento e a NBR 15805 que se aplica para placas de concreto.

O equipamento atual conta com um sistema de medição de força onde através de uma célula de carga e registra no próprio controlador do equipamento a força máxima de quebra da amostra sem coletar o deslocamento (flecha) da amostra.

O mesmo dispositivo embarcado no flexímetro (controlador) disponibiliza mais de uma entrada analógica para coleta de dados de sensores, também possui uma porta serial RS232 que permite a conexão a um computador com sistema de aquisição de dados para o registro dos valores, assim, não necessitando a substituição do componente eletrônico de aquisição.

O registro destas duas grandezas assim como a apresentação dos resultados será realizado através de um programa construído no software labview® onde ele vai se comunicar com o controlador do equipamento pela porta serial coletando assim os dados da prova.

2.1. SELEÇÃO DO SISTEMA DE MEDIDA

Para obter a deformação instantânea das amostras, foi necessário a instalação de um sensor capaz de medir o deslocamento do braço de ensaio e com isso obter a deformação (flecha) do corpo de prova no ensaio.

O dispositivo de aquisição de dados embarcado no equipamento já dispões de três tipos de entrada para uso dos mais diversos tipos de sensores incluindo os de posição. A configuração das entradas está listada abaixo:

- Entrada analógica 0 a 10 vcc com resolução 14 bits;
- Entrada analógica 4 a 20 mA com resolução 14 bits;
- Entrada PWM de dois canais com resolução 32 bits;

De acordo com tipos de entrada que o sistema de aquisição do equipamento dispõe, selecionou-se os tipos de sensores que atendam a configuração do equipamento e as especificações das normas citadas no capítulo anterior.

Princípio 3 Categoria Princípio 1 Princípio 2 Analógico **PWM** PWM Tipo de Sinal 0 2 3 1 0 0 2 3 1 0 **Encoder Linear Encoder Rotativo** Tipo Régua de Potenciométrica sensor Custo "R\$" R\$ 1098,00 R\$ 1400,00 R\$440,00

Tabela 1- Relação de componentes (Autor, 2020)

O princípio 1 se mostrou bastante atrativo, porem a baixa resolução do sinal no sistema de aquisição do equipamento tornou seu uso inviável, tendo em vista a resolução solicitada pelos clientes. Já o uso do princípio 3 apresentou outras dificuldades para o projeto como, incertezas na medição gerada pela folga no fuso que transmite a força para o braço de prova assim, como possíveis folgas no redutor acoplado ao motor.

Adotou-se o princípio 2 onde, mesmo com o seu valor financeiro maior em relação às outras opções, ele se mostrou o mais adequado e confiável para uso no equipamento proposto.

2.2. SUPORTE PARA TRANSDUTOR

Elaborou-se por meio do software SolidWorks®, um modelo digital do sistema de fixação do transdutor, Fig. 4, para fins de instalar o sensor em um local adequado

onde não ocorra problemas de choque com outros componentes, ou venha sofrer esforços que possam interferir no sistema de medição do equipamento durante a prova.

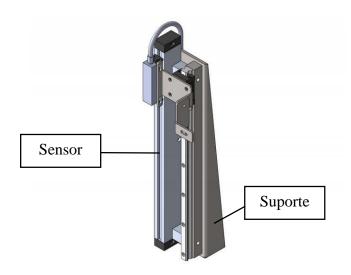


Figura 4 - Modelo 3d do suporte do sensor (Servitech, 2020)

Elaborado em chapa de aço 1020 e fixado por parafusos, o mecanismo levou em consideração a instalação de um trilho com rolamento linear paralelo ao sensor, Fig. 5, de forma a evitar esforços fora do sentido longitudinal ao movimento do cabeçote da régua, evitando-se danos ao dispositivo de medida e eliminar possíveis folgas do sistema.

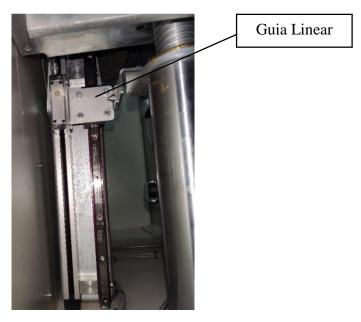


Figura 5 - Sensor instalado na máquina (Servitech, 2020)

Após a instalação do mecanismo no Flexímetro, realizou-se o procedimento de calibração, e a elaboração da equação de transferência, para garantir a exatidão do dispositivo durante o processo de medição na prova. Este procedimento está descrito em um capítulo posterior.

2.3. EQUAÇÃO DE TRANSFERENCIA

Foi realizado nesta etapa, o ajuste da sensibilidade dos sensores instalados na máquina (encoder linear e Célula de carga). Coletando os dados de cada sensor, e gerando gráficos com as curvas de sensibilidade.

As curvas de sensibilidade foram validadas pelo método de regressão linear e coeficiente de determinação (R²). Para validar o valor da correlação, o coeficiente deve apresentar um valor muito próximo de 1, o que indica um uma correlação forte da unidade medida.

2.3.1. CÉLULA DE CARGA

Utilizou-se uma balança calibrada para determinar a carga aplicada sobre a célula de carga do equipamento. Os valores coletados foram registrados na Tab. 2 e em seguida transferidos para o gráfico, Fig. 6, de onde retira-se a equação de transferência para obtenção do valor médio.

Tabela 2 - Tensão x Carga (Autor, 2020)

Índice	1	2	3	4	5	6	7
Carga (Kgf)	0	85,84	168,70	251,54	334,39	417,24	500,00
Tensão (V)	0	0,76	1,53	2,30	3,07	3,84	4,61

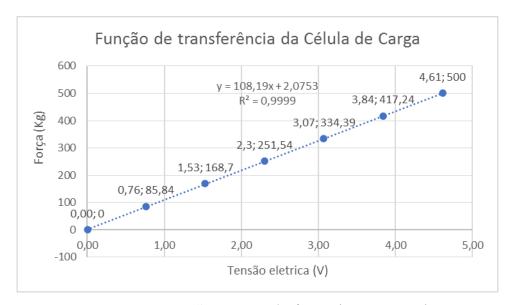


Figura 6 - Função de transferência (Autor, 2020)

As curvas de sensibilidade foram validadas, o valor da inclinação foi 108,19, a intercepção apresentou o valor 2,0753 e o coeficiente de determinação se mostrou um valor adequado 0,9998 bem próximo de 1.

2.3.2. ENCODER LINEAR

Para determinação da equação com o transdutor linear, padrões de medidas foram utilizados e devidamente registrados na Tab. 3 assim como os dados coletados do transdutor linear. Os valores da tabela foram repassados para o software excel® gerando o gráfico Fig. 7.

Tabela 3 - Dados do transdutor deslocamento (Autor, 2020)

Índice	1	2	3	4	5	6	7
Distância (mm)	20,04	40,06	60,05	80,60	100,00	120,05	140,02
Pulsos	2008	4014	6016	8021	10018	12027	14002

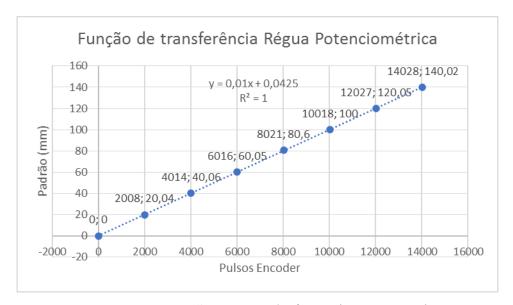


Figura 7 - Função de transferência (Autor, 2020)

É possível observar que o coeficiente R² apresenta o valor 1. A determinação do fator de conversão se realizou usando conceitos de regressão linear e o valor de inclinação foi 0,01. O valor de intercepção foi de 0,0425.

2.4. SOFTWARE DE AQUISIÇÃO DE DADOS

Aquisição de dados é um processo de medição de uma grandeza física, com o uso de computador Fig. 8. Em comparação com sistemas tradicionais de medição, o uso de PC´s sendo usado para o processamento, visualização e armazenamento de dados aumenta a produtividade e se torna uma solução mais flexível, poderosa e de menor custo-benefício.

Figura 8 - Diagrama DAQ (Autor, 2020)

Para realizar o ensaio, há a necessidade de adquirir os dados do equipamento de deslocamento e força instantânea, com a finalidade de análise posterior. Considerando esta necessidade, realizou-se o desenvolvimento de um programa para registro e análise destes dados com o auxílio do software Labview®, Fig. 9(a) Painel de operação e Fig. 9(b) Fluxo dos dados.

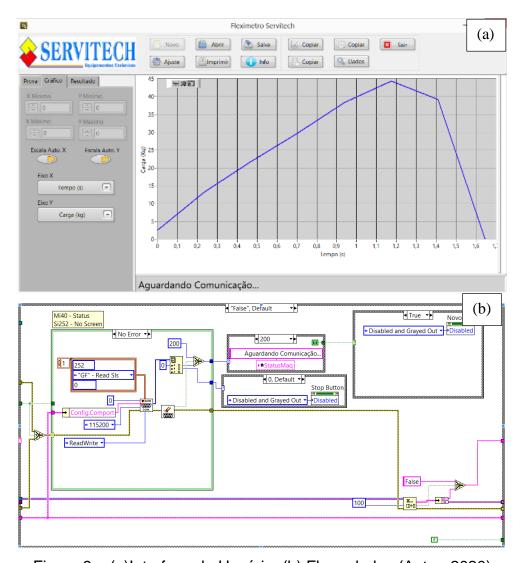


Figura 9 – (a)Interface do Usuário, (b) Fluxo dados (Autor, 2020)

O programa deverá se comunicar através de uma conexão serial RS232 entre o PC e o controlador programável, registrar os dados coletados pelos seus sensores e controlar seus movimentos de avanço e retorno com o envio de mensagens préestabelecidas na sua configuração, pela porta serial.

3. CONCLUSÃO

A realização do estágio no setor de desenvolvimento da empresa Servitech Serviços Técnicos e Representações foi uma excelente oportunidade de desenvolvimento e aprendizado, pois proporcionou o fortalecimento do curso de Engenharia, exercendo a sua função na relação teórica das disciplinas, cursadas durante a formação acadêmica na Faculdade SATC.

Através das atividades descritas neste relatório, bem como as demais realizadas ao decorrer do estágio, podemos concluir que os produtos sofrem alterações constantes a procura do aperfeiçoamento e menor custo. Necessitando de especialistas em diversas áreas para que as atualizações sejam executadas e colocadas em produção.

Para as áreas de desenvolvimento, são necessários conhecimentos em diversos setores de atuação como: modelagem CAD das peças mecânicas, programação em software de engenharia, interpretação de desenhos técnicos, prototipagem, propriedades dos materiais, processos de fabricação e produção, resistência dos materiais e conhecimento em eletricidade e eletrônica básica.

4. REFERÊNCIAS BIBLIOGRÁFICAS

SERVITECH SERVIÇOS TÉCNICOS E REPRESENTAÇÕES LTDA. A empresa. Disponível em : https://www.servitech.com.br/html/empresa.html. Acesso em 03 de março de 2020.

Associação Brasileira de Normas Técnicas. NBR 13818 Anexo C - Determinação da Carga de Ruptura e Módulo de Resistência a Flexão - Especificações e Métodos de Ensaios. Rio de Janeiro, 1997.

International Organization for Standardization. ISO 10545 Part 4 - Determination of modulus of rupture and breaking strength. 2014, Suíça.

Associação Brasileira De Normas Técnicas. ABNT/NBR 15210-2, Telha ondulada de fibrocimento sem amianto e seus acessórios— Ensáios. Rio de Janeiro, 2015.

Associação Brasileira De Normas Técnicas. ABNT/NBR 15805/2015: Pisos Elevados de Placas de Concreto – Requisitos e Procedimentos. Rio de Janeiro, 2015.

NATIONAL INSTRUMENTS. What is Data Aquisition DAQ. Disponível em: https://www.ni.com/pt-br/shop/data-acquisition.html. Acesso em: 03 de abril de 2015.