

ANÁLISE DE TENSÕES DE BARRA RETANGULAR APLICADA EM GRAMPEADEIRAS

Mateus Schambeck¹ Alexandre Milanez²

Resumo: A economia mundial está atravessando uma crise de matérias primas, principalmente em relação ao aço, ocasionada principalmente a pandemia de covid-19 que provocou uma escassez de matérias primas e inflação nos preços. Essa matéria prima é muito utilizada na indústria de máquinas e não é diferente na do setor moldureiro. Consequentemente essas indústrias estão progressivamente buscando a otimização da utilização de materiais. A Grampeadeira é um equipamento utilizado para o grampeamento de molduras e para a construção dessa máquina é necessária a utilização do aço. Portanto o objetivo deste trabalho é projetar um componente de seção retangular, utilizada em máquina do setor moldureiro, com menor área de seção transversal possível. A definição desse componente foi produzida de forma foram realizados cálculos e então foi realizada uma simulação utilizando um *software* de simulação estrutural por elementos finitos. Com isso foi possível diminuir a área da seção da peça pronta em cerca de 27% em relação ao projeto inicial, mantendo um bom desempenho. Por consequência houve uma diminuição notória da área da seção transversal, de acordo com o objetivo deste trabalho.

Palavras-Chave: Torção; Grampeadeiras; Fadiga; Coeficiente de segurança

1 INTRODUÇÃO

A questão de matérias primas, se tornou muito importante na indústria em geral. Segundo Américo (2021), a pandemia de covid-19, criou falta de matéria prima, dentre elas o aço, assim criando uma inflação no preço deles.

A principal matéria prima utilizada para a produção de grampeadeiras, muito utilizadas pelo setor moldureiro, é o aço. Esse equipamento deve grampear as molduras, de forma que a grampeadeira possua uma boa rigidez, vida útil e baixo custo de fabricação, assim não danificando as molduras e grampeando produtos de alta qualidade. Uma parte da máquina que é solicitada por esforços mecânicos é a tala transversal que transmite o movimento para a tala superior que pressiona a moldura, enquanto ela é grampeada.

¹ Graduando em Engenharia Mecânica. Ano 2021-2. E-mail: mateusschambeck@hotmail.com

² Professor do Cento Universitário UniSATC. E-mail: alexandre.milanez@satc.edu.br

Assim para garantir um custo menor de matérias primas para produção do equipamento e uma vida útil maior, há a necessidade de através de cálculos de resistência dos materiais, definir qual poderá ser a menor área da seção transversal dessa tala.

Este trabalho apresenta como objetivo projetar a tala transversal de uma grampeadeira com a menor área de seção transversal possível, com bom funcionamento, e baixo custo de aquisição de matéria prima.

2 REVISÃO BIBLIOGRÁFICA

Neste capitulo foi englobado a revisão bibliográfica essencial para este trabalho, com o intuito de apresentar as informações de forma cientifica para a execução da analise de torção da barra de grampeadeiras. O componente que foi tratado é a a tala transversal de uma grampeadeira que é movimentada verticalmente através de atuadores pneumáticos. Esse componente é responsável por pressionar a moldura, afim de garantir o grampeamento.

2.1 GRAMPEADEIRAS

Existem alguns tipos de grampeadeiras para o grampeamento de molduras. Algumas das principais diferença entre elas é que algumas possuem o acionamento por meio de esforço mecânico através das pernas do operador e outras possuem acionamento pneumático e também podem ser diferenciadas através da capacidade de grampeamento. A Fig. 1 demonstra como é montada uma moldura que são comumente fabricadas. As molduras como o da Fig. 1 quando grampeados, normalmente formam um retângulo e os perfis de moldura para o grampeamento são cortados geralmente com as extremidades em 45°. O grampeamento é um método simples, bastando o operador comandar o sistema pneumático para o pressor abaixar pressionando a moldura no lugar e automaticamente logo em seguida atuando o martelete que empurra o grampo para unir as partes.

O equipamento deste estudo é uma grampeadeira pneumática que permite realizar o grampeamento de quadros de grandes dimensões com qualidade e facilidade.

Fonte: Do autor (2021)

No processo de grampeamento os pressores hidropneumáticos em forma de balancim fixam a moldura (em dois pontos distintos) sobre a mesa de aço. Através de uma alavanca gatilho o cabeçote pode ser deslocado na linha de emenda, permitindo o grampeamento da moldura. Possui também um pressor horizontal que garante a moldura perfeitamente apoiada no esquadro. Os dois sistemas de pressores (vertical e horizontal) possuem regulagens distintas de força de fixação. A Fig. 2 demonstra a localização dos itens principais, a forma que estão montados na máquina e que a tanto a fixação da Tala superior e da Tala transversal são por parafusos.

Fonte: Do autor (2021)

2.2 TORÇÃO

Para Hibbler (2010) o momento torçor é um momento que tende a torcer um elemento em torno do seu eixo longitudinal. Este tipo de carregamento é muito observado em aplicações práticas da engenharia, como por exemplo: eixos de

transmissão de turbinas a vapor e em eixos motores de automóveis. Tendo a necessidade de ser considerado o efeito do torque como uma preocupação primária para eixo de veículos e estruturas diversas.

2.2.1 Torção em eixos de seção circulares

Os eixos circulares são os mais comumente encontras nas aplicações de engenharia. É possível ilustrar fisicamente como um eixo circular que é feito com um material de alta deformação se comporta a um esforço de torção, como na Fig. 3a.

De acordo com Hibbler (2010) quando o momento torçor é aplicado, os círculos e as retas longitudinais das grades, que foram marcadas anteriormente no eixo, tendem a se distorcer conforme o padrão mostrado na Fig. 3b. Portanto é possível concluir que as linhas longitudinais ficam em formato de hélice, os círculos continuam como círculos e que as laterais transversais não se deformam. A Fig. 3 mostra como ocorrem os esforços de torção em um eixo de seção circular.

Fonte: Hibbler (2010)

2.2.2 Torção em eixos de seção não circulares

As deduções para a determinação da tensão de cisalhamento, visto anteriormente, só podem ser aplicadas para eixos circulares, pois foi considerado que as seções transversais permanecem planas após a deformação e mantêm a sua

forma, porém para barras de seção retangulares, só mantém a aparência se girarmos 90° ou 180°, caso ocorra rotação em outra angulação a seção transversal sairá do seu plano original conforme a Fig. 4 (BEER, 1995).

Figura 4: Esforço de torção em um eixo retangular.

Fonte: Beer (1995)

Assim foram deduzidas as Eq. 1 e 2 para barras retangulares, segundo Norton (2013).

$$\tau_{m\acute{a}x\ torque} = \frac{T}{Q} \tag{1}$$

$$\phi = \frac{T \cdot L}{K \cdot G} \tag{2}$$

Onde:

 $\tau_{máx torque}$ = Tensão de cisalhamento máxima (Pa);

 $T = \text{Torque}(N \cdot m);$

 ϕ = Ângulo de torção (Radianos);

G = Módulo de elasticidade transversal (GPa);

L = Comprimento da barra (m);

Q = Função de geometria da seção transversal (m³);

K = Função de geometria da seção transversal (m⁴).

As funções Q e K são calculadas através das Eq. 3 e 4 e os lados do retângulo maciço são mostrados na Fig 5.

$$Q = \frac{8a^2 \cdot b^2}{3 \cdot a + 1, 8 \cdot b} \tag{3}$$

$$K = a \cdot b^3 \cdot \left[\frac{16}{3} - 3,36 \cdot \frac{b}{a} \left(1 - \frac{b^4}{12 \cdot a^4} \right) \right]$$
(4)

Onde:

a = Lado maior da seção transversal dividido por dois (m);

b = Lado menor da seção transversal dividido por dois (m);

retângulo maciço

Fonte: Norton (2013)

2.3 TENSÃO DE CISALHAMENTO TRANSVERSAL

As tensões de cisalhamento transversal, segundo Hibbler (2010) ocorrem normalmente em vigas de seção transversal prismática. Muitas vezes essas vigas suportam cargas de cisalhamento e momento fletor. É possível calcular a tensão de cisalhamento transversal através da Eq. 5 (HIBBLER, 2010)

$$\tau_{cisalha.\ transversal} = \frac{V \cdot Q}{I.t}$$
(5)

Onde:

 $\tau_{cisalha. transversal}$ = Tensão de cisalhamento transversal (Pa);

 V_z = Força cortante (N);

 I_z = Momento de inércia (m⁴);

 Q_z = Momento estático (m³);

t = Largura da área da seção transversal do elemento (m);

Para a utilização da Eq.5 é necessário que o material se comporte de maneira linear elástica e possua o mesmo módulo de elasticidade sob compressão e tração.

2.4 TENSÃO DE VON-MISES

O critério de Von-Mises, segundo Beer (1995) se baseia na determinação da energia de distorção de um material. Esse critério diz que um componente estrutural estará em condições de segurança pelo tempo que o maior valor de energia de distorção por unidade de volume do material permanecer abaixo da energia de distorção por unidade de volume que é preciso para ocasionar o escoamento do material. A tensão de von- Mises para duas dimensões, para Norton (2013), pode ser calculada através da Eq. 6.

$$\sigma_V = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x^2 \cdot \sigma_y^2 + 3 \cdot \tau_{xy}^2} \tag{6}$$

Onde:

 σ_V = Tensão de von- Mises (Pa); σ_x = Somatório das tensões normais em x (Pa); σ_y = Somatório das tensões normais em y (Pa); τ_{xy} = Somatório das tensões de cisalhamento (Pa).

2.5 VIGAS ESTÁTICAMENTE INDETERMINADAS

Existem situações nas quais não se consegue determinar os esforços apenas com uso da estática, portanto é necessário a utilização de equações de equilíbrio complementadas por outras relações, que devem levar em conta as deformações e as restrições da geometria do problema a ser resolvido. Para Hibbler (2010) um elemento estrutural de qualquer característica será classificado como

estaticamente indeterminado, quando o número de reações desconhecidas for maior que o número de equações de equilíbrio que estão à disposição. Beer (1995, p. 852) definiu no problema 8.56 para uma viga bi engastada com uma força no centro como o da Fig. 6 as Eq. 7 e 8 que representam as reações e o momento fletor máximo.

Figura 6: Diagrama problema 8.56.

Fonte: Do autor (2021)

$$R_A = \frac{P}{2} \tag{7}$$

$$M_A = \frac{P \cdot L}{8} \tag{8}$$

Onde:

 R_A = Reação em A (N); P = Força (N); M_A = Momento em A (N·m); L = Comprimento da viga (m).

2.6 AÇO SAE 1020

O aço SAE 1020, é um aço com baixo teor de carbono, geralmente é submetido a processos de conformação mecânica, como usinagem, forjamento, trefilação entre outros, além disso ele possui diversas aplicações. Esse aço tem como característica o preço mais acessível e disponibilidade maior de mercado. As principais características dele estão na Tab. 1.

Tabela 1: Propriedades mecânicas laminado	aço	SAE 1020
Módulo de elasticidade transversal (G)	75	GPa
Tensão de escoamento	330	MPa
Limite de resistência	450	MPa
Fonte: Baseado e/ou Adaptado de Gerdau (20)03, p.	80)

2.7 COEFICIENTE DE SEGURANÇA

Conforme Norton (2013, p. 16):

Um coeficiente de segurança (também chamado de fator de segurança) pode ser expresso de muitas formas. Ele é tipicamente a razão entre duas quantidades que possuem as mesmas unidades, como (resistência)/ (tensão atuante), (esforço crítico) / (esforço aplicado), (esforço que quebra a peça) / (esforço esperado em serviço), (máximo número de ciclos) / (número de ciclos solicitados) ou (velocidade que quebra) / (velocidade em operação).

Quando não existe nenhuma norma especifica, pode se utilizar um quadro como base para o coeficiente de segurança, através de fatores como tipo de carregamento e material utilizado (Tab.2).

Informações	Qualidade das informações	Fator
	O motorial realmente utilizado fai testado	<u>F1</u>
Dados das	Dados representativos de testes do material estão disponíveis	1,3
propriedades dos materiais	Dados razoavelmente representativos de testes do material estão disponíveis	3
disponíveis a partir de testes	Dados insuficientemente representativos de testes do material estão disponíveis	5+
		<u>F2</u>
Condições	São idênticas às condições dos testes de materiais	1,3
ambientais nos	Essencialmente igual ao ambiente de um laboratório comum	2
quais será	Ambiente moderadamente desafiador	3
utilizado	Ambiente extremamente desafiador	5+
		<u>F3</u>
Modelos	Os modelos foram testados em experimentos	1,3
IVIODEIOS	Os modelos representam precisamente o sistema	2
forcas e tensões	Os modelos representam aproximadamente o sistema	3
	Os modelos são aproximações grosseiras	5+

Tabela 2: Fatores utilizados para determinar um coeficiente de segurança para materiais dúcteis.

Fonte: Baseado e/ou Adaptado de Norton (2013, p. 19)

A Eq. 9 do Norton (2013) define o coeficiente de segurança através da Tab. 2. Sendo o valor do fator mais alto, o coeficiente de segurança.

 $N_{dúctil} = VALOR MAX (F1 ou F2 ou F3)$

Onde:

 $N_{dúctil}$ = Coeficiente de segurança (---).

2.8 FALHA POR FADIGA

Quando um material é submetido a ciclos repetidos de tensão ou deformação, sua estrutura pode se romper, o que, por fim resulta em ruptura, esse comportamento é chamado de fadiga (HIBBLER, 2010)

A maioria das falhas em máquinas acontece devido a cargas que variam no tempo, e não a esforços estáticos. Essas falhas ocorrem, geralmente, em níveis de tensão significativamente inferiores aos valores da resistência ao escoamento dos materiais (NORTON, 2013). Existem dois tipos de carregamento considerado: fadiga de baixo-ciclo (FBC), cujo número de oscilações do carregamento é menor que 1000 vezes, e o fadiga de alto-ciclo (FAC) com um número de um milhão ou mais.

Para alguns materiais como os aços existe um fenômeno que é possível chegar a uma vida infinita, a partir de um número determinado de ciclos, e essa característica é chamada de limite de fadiga. Segundo Beer (1995) aços com baixo teor de carbono, o limite de fadiga é aproximadamente a metade do limite de ruptura do aço.

2.9 ATUADORES PNEUMÁTICOS

Segundo a Microautomação (2015) os atuadores pneumáticos são dispositivos que transformam a energia potencial do ar comprimido em energia cinética. Geralmente é composto por um recipiente cilíndrico com um êmbolo. Quando o ar comprimido é introduzido, este se expande dentro da câmara e ocasiona um deslocamento linear. A força é proporcional a pressão do ar e a área da superfície do

(9)

êmbolo, a Eq. 10 descrita pela Microautomação (2015) demonstra como essa força é calculada.

$$F = P \cdot A \tag{10}$$

Onde:

F = Força produzida pelo atuador (N);

P = Pressão pneumática (Pa);

A =Área da superfície do êmbolo (m²).

3 PROCEDIMENTO EXPERIMENTAL

Com o intuito de realizar a obtenção dos resultados de forma sucinta e organizada, foi elaborado um fluxograma em ordem lógica dos procedimentos que foram realizados. A tala transversal da grampeadeira que sofre esforços, foi analisada analiticamente e por elementos finitos afim de definir a menor área de seção transversal. A Fig. 7 demonstra o fluxograma do procedimento experimental.

Fonte: Do autor (2021)

O procedimento iniciou-se a partir da modelagem dos esforços que a tala transversal sofrerá, logo é necessário que alguns dados sejam compilados. A Fig. 8 demonstram como o conjunto trabalha e o diagrama de forças e a Tab. 3 apresenta os dados iniciais.

Figura 8: (a) desenho das partes que atuam sobre a tala transversal. (b) diagrama das forças.

Fonte: Do autor (2021)

Os dados da Tab. 3 foram extraídos por meio do projeto da máquina, sendo L_p e L_m , os maiores cursos do pressor e do martelete em relação a tala transversal, respectivamente. Sendo essa, a pior situação possível, quando um único pressor está pressionando a moldura e o martelete empurrar o grampo. A pressão pneumática de trabalho máxima da máquina se refere a pressão pneumática que agirão nos atuadores pneumáticos, nas quais dois pressionam a moldura e um empurra o grampo. O F_p e o F_m são respectivamente a força causada pelo pressor e pelo martelete.

Tabela 3: Valores pré-definidos

Variáveis definidas	Valores
Lp (m)	0,21
Lm (m)	0,24
Comprimento da tala transversal (m)	0,259
Pressão pneumática de trabalho máxima (MPa)	0,7
Diâmetro êmbolo atuador martelete (m)	0,063
Diâmetro êmbolo atuadores pressor (m)	0,05
Diâmetro haste atuadores pressor (m)	0,02
Fonte: Do autor (2021)	

3.2 CÁLCULO DAS FORÇAS ATUANTES

Existem duas cargas que atuarão nesse caso, a força F_p foi definida por meio da Eq. 11 e a força F_m pela Eq. 12, essas equações são uma derivação da Eq. 10. Sendo elas exercidas pelos atuadores pneumáticos do pressor e do martelete, na qual o formato dos êmbolos e da haste são circulares.

$$F_p = 2 \cdot P \cdot \left(\frac{\pi \cdot d_{e,p}^2}{4} - \frac{\pi \cdot d_{h,p}^2}{4}\right) \tag{11}$$

$$F_m = P \cdot \frac{\pi \cdot d_m^2}{4} \tag{12}$$

Onde:

P = Pressão pneumática máxima de trabalho (Pa);

- $d_{e,p}$ = Diâmetro do êmbolo do atuador pressor (m²);
- $d_{h.p}$ = Diâmetro da haste do atuador pressor (m²);
- d_m = Diâmetro do êmbolo do atuador martelete (m²);
- F_p = Força do pressor (N);
- F_m = Força do martelete (N).

Na Eq. 11 o existem dois atuadores pneumáticos pressionando a moldura, sendo assim, foi multiplicado a equação por dois.

3.3 CÁLCULO DAS TENSÕES ATUANTES

Para o cálculo do torque, inicialmente foi preciso encontrar a somatórias dos momentos no ponto A, conforme a Fig. 9.

Figura 9: Diagrama de forças para cálculo do momento.

Após isso foi obtido o M', com isso foi possível encontrar as reações T_{R1} e T_{R2} da Fig. 10, graças ao M' ser exercido no meio da tala transversal, o T_{R1} e o T_{R2} são iguais, ou seja, $T_{R1} = T_{R2} = M'/2$.

Figura 10: Diagrama das reações.

Fonte: Do autor (2021)

A Fig. 10 demonstra as reações sofridas pela Tala transversal e os pontos A e B, que são alguns dos pontos críticos, outros pontos críticos são nas extremidades onde se localizam os apoios, pois os momentos máximos ficam localizados nas extremidades e no meio da tala, porém esse estudo seria mais complicado.

Além do torque que causa cisalhamento na peça, há a tensão de cisalhamento transversal que é representada pela Eq. 13, que foi adaptada da Eq.5.

$$\tau_{m\acute{a}x\ tran} = \frac{(F_p + F_m) \cdot Q_z}{I_z \cdot 2 \cdot b} \tag{13}$$

Onde:

 F_p = Força do pressor (N);

 F_m = Força do martelete (N);

 $\tau_{máx \ tran}$ = Tensão máxima de cisalhamento transversal (Pa);

 I_z = Momento de inércia em z (m⁴);

 Q_z = Momento estático em z (m³);

b = Lado menor da seção transversal dividido por dois (m).

A tala transversal também é submetida a esforços de flexão, a Eq. 14 foi utilizada para calcular a tensão normal devido a flexão.

$$\sigma_{flexão} = \frac{M_z \cdot a}{l_z} \tag{14}$$

Onde:

 $\sigma_{flexão} =$ Tensão de flexão (Pa);

 M_z = Momento fletor máximo (N·m);

a = Lado maior da seção transversal dividido por dois (m).

 I_z = Momento de inércia em z (m⁴).

Para encontrar o momento fletor máximo foi necessária a utilização da Eq.8 para vigas estaticamente indeterminados, pois a barra é considerada bi engastada e com uma força no centro.

A partir Eq. 15 foi obtido o momento de inércia para as Eq. 13 e 14. Foi considerado o "a" como a altura, pois na tensão por flexão o momento de inércia é inversamente proporcional a tensão, portanto para obter um momento de inércia maior, foi utilizado o maior lado como altura.

$$I_z = \frac{(2 \cdot b) \cdot (2 \cdot a)^3}{12}$$
(15)

Onde:

 I_z = Momento de inércia (m⁴);

a = Lado maior da seção transversal dividido por dois (m);

b = Lado menor da seção transversal dividido por dois (m).

Como o ponto B da Fig. 10 é o que sofre cisalhamento transversal, foi utilizado ele como referência para extrair o valor do momento estático, foi então utilizada a Fig.11 que define a área da divisão e o \overline{y} como a centroide da área.

Figura 11: Definição da área do momento estático.

Fonte: Do autor (2021)

A Eq. 16 define o momento estático, estando a equação em um formato desenvolvido para o caso da Fig. 11.

$$Q_z = a^2 \cdot b \tag{16}$$

Onde:

 Q_z = Momento estático em z (m³);

a = Lado maior da seção transversal dividido por dois (m);

b = Lado menor da seção transversal dividido por dois (m).

Para a definição da tensão total aplicada na peça, foi utilizada a tensão de Von – Mises, obtida através da Eq.6. Os pontos A e B da Fig.10 são os pontos critícos, nesses dois pontos como não há forças em x o somatório das tensões em x é zero. No ponto A, as tensões normais em y são zero, restando apenas o somatório das tensões de cisalhamento que é igual a tensão de cisalhamento máxima pela torção mais a tensão máxima de cisalhamento transversal.

Para o ponto B o somatório das tensões em y é igual a tensão causada pela flexão e o somatório das tensões de cisalhamento é igual a tensão de cisalhamento máxima pela torção.

3.4 TENSÃO MÁXIMA ADMISSÍVEL

Para definir a tensão máxima admissível foi necessário considerar que o material poderá falhar através da fadiga. Para isso foi selecionado por meio da Eq. 9 e da Tab. 4 o coeficiente de segurança, que é 2.

Tabela 4: Fatores utilizados para determinar um coeficiente de segurança para materiais dúcteis para este caso.

Informações	Qualidade das informações	Fator
		<u>F1</u>
Dados das propriedades dos materiais disponíveis a partir de testes	O material realmente utilizado foi testado	1,3
	Dados representativos de testes do material estão disponíveis	2
	Dados razoavelmente representativos de testes do material estão disponíveis	3

	Dados insuficientemente representativos de testes do material estão disponíveis	5+
		<u>F2</u>
Condições ambientais nos	São Identicas as condições dos testes de materiais	1,3
quais será utilizado	Essencialmente igual ao ambiente de um laboratório comum	2
quais sela utilizado	Ambiente moderadamente desafiador	3
	Ambiente extremamente desafiador	5+
		<u>F3</u>
	Os modelos foram testados em experimentos	1,3
Modelos analíticos para forças e tensões	Os modelos representam precisamente o sistema	2
	Os modelos representam aproximadamente o sistema	3
	Os modelos são aproximações grosseiras	5+

Fonte: Baseado e/ou Adaptado de Norton (2013, p. 19)

Foi considerado que o material não falhará por fadiga se a tensão de ruptura não chegar à metade e utilizando a Eq. 17, foi definida a tensão admissível. Sendo o material escolhido o aço SAE 1020, na qual os dados estão na Tab. 1.

$$\sigma_{adm} = \frac{\sigma_{rup}}{Fad \cdot N_{d\acute{u}ctil}} \tag{17}$$

Onde:

 $N_{dúctil}$ = Coeficiente de segurança (---).

 σ_{adm} = Tensão admissível (Pa);

 σ_{rup} = Tensão de ruptura do material (Pa);

Fad = Fator ciclo infinito da fadiga (---).

3.5 MÉTODO DE DEFINIÇÃO DA GEOMETRIA

Primeiramente para definir a seção transversal da tala, foram utilizadas as Eq. 1 e 3 para calcular o valor de Q. Com o auxílio do *software* Microsoft Excel® foram executadas tabelas com valores de a e b da Eq. 3, iniciando com os lados maiores sendo 0,03 m e terminando em 0,045 m e os menores começando em 0,02 m e terminando em 0,045 m, como por exemplo a Tab. 5. Assim foram criadas 16 tabelas até encontrar a seção com menor área transversal, que suporte a tensão admissível do material, nos pontos A e B da Fig. 10.

Lado maior (mm)	Lador menor (mm)	Área (mm²)	Q	τmáx torção(MPa)	τmáx tran(MPa)	σflexão(MPa)	σv ponto A (MPa)	σv ponto B (MPa)
32	20	640	3,10E-06	162,51	5,26	42,57	290,59	284,68
32	21	672	3,38E-06	149,41	5,01	40,54	267,47	261,95
32	22	704	3,65E-06	137,97	4,78	38,70	247,26	242,08
32	23	736	3,94E-06	127,91	4,58	37,02	229,47	224,62
32	24	768	4,24E-06	119,01	4,39	35,47	213,73	209,16
32	25	800	4,54E-06	111,10	4,21	34,05	199,72	195,42
32	26	832	4,85E-06	104,03	4,05	32,74	187,20	183,13
32	27	864	5,16E-06	97,68	3,90	31,53	175,94	172,10
32	28	896	5,48E-06	91,96	3,76	30,41	165,79	162,15
32	29	928	5,81E-06	86,78	3,63	29,36	156,60	153,15
32	30	960	6,14E-06	82,08	3,51	28,38	148,24	144,97
32	31	992	6,48E-06	77,79	3,40	27,46	140,62	137,51
32	32	1024	6,83E-06	73,87	3,29	26,61	133,64	130,68

T I I C			<i>.</i> .			~
Lahela 5	Exemplo	da torma	como toi	determinada	a menor	Secao
Tubblu 0.	Exemple	uu ionnu		actonniada	a monor	JUQUU.

Fonte: Do autor (2021)

3.6 SIMULAÇÃO ESTRUTURAL

Das simulações estruturais realizadas no *software* de elementos finitos, foram comparados com os cálculos analíticos realizados anteriormente. Dentre eles se destaca a tensão que a peça sofrerá nos furos dos apoios e no ponto B.

Para otimizar e facilitar a montagem da peça foi preparada em um *software* CAD (*computer-aided design*) e após isso foi gerado um arquivo em .Parasolid X_T que foi exportado para o *software* de simulação estrutural.

Todo o conjunto é de aço SAE 1020 com os dados da Tab. 1 e o coeficiente de Poisson considerado foi de 0,29, sendo esse retirado do próprio *software* de simulação. Em seguida foi gerada a malha no conjunto e para averiguar a qualidade da malha foi utilizada a ferramenta *Skewness* que analisa o grau de distorção dos elementos, conforme Tab. 6.

Tabela 6: Qualidade de malha

Skewness	
Value of Skewness	Cell Quality
1	degenerate
0,9 - <1	bad
0,75 - 0,9	poor
0,5 - 0,75	fair
0,25 - 0,5	good
>0 - 0,25	excellente
0	equilateral
Easter Aserva (2010)	

Fonte: Ansys (2019)

As Fig. 12 e 13 representam as estatísticas e a qualidade da malha do modelo.

Nodes	55069
Elements	11764
Mesh Metric	Skewness
Min	1,3057e-010
Max	0,51001
Average	7,0529e-002
Standard Deviation	0,10111

ra 12. Estatísticas da malh

Fonte: Do autor (2021)

Figura 13: Qualidade da malha

Fonte: Do autor (2021)

A qualidade demonstrou-se boa, sendo que a média ficou próxima a zero, de acordo com as especificações do modelo Skewness. Além disso foi verificado que os poucos elementos que foram considerados piores, ainda assim foram considerados na métrica como razoáveis. A Fig. 14 demonstra as condições de contorno introduzidas no software para a realização da simulação. As condições de engaste foram realizadas através da aplicação de suportes fixos nos dois furos das extremidades. Já a força foi aplicada no centro, sendo ela composta pela somatória de F_m e F_p e nos dois furos do centro da peça foi inserido o torque.

Figura 14: Condições de contorno

Fonte: Do autor (2021)

4 RESULTADOS E DISCUSSÕES

4.1 DEFINIÇÃO DA SEÇÃO TRANSVERSAL

Após a modelagem e cálculos de tensões foram obtidos os resultados nas tabelas que foram comentadas no tópico 3.5, após foi analisado e encontrado o valor de conversão com a tensão admissível que é 112,5 MPa, esse valor foi obtido através do limite de resistência do materia que falhará por fadiga, explicada no tópico 3.4. A Tab. 7 desmonstra o resultado obtido da seção de menor área que suporta a carga.

Variáveis da seção transversal	Valores
Lado maior (mm)	34
Lado menor (mm)	34
Área (mm²)	1156
a (m)	0,017
b (m)	0,017
Tmáx torção (MPa)	61,59
Tmáx transversal (MPa)	2,91
σflexão (MPa)	22,18
σ von – mises no ponto A (MPa)	111,72
σvon – mises no ponto B (MPa)	108,95

Tabela 7: Dados da seção transversal mínima obtida.

Fonte: Do autor (2021)

tensão admissivel, e que para se obter o resultato exato da tensão admissivel seria necessário variar os lados da seção na ordem dos décimos de milimetro, porém isso não afetaria o resultado final.

4.2 ANÁLISE ESTRUTURAL NO SOFTWARE DE SIMULAÇÃO NÚMÉRICA

Os resultados da análise estrutural produzida na seção da Tab. 6 por meio de elementos finitos estão nas Fig. 15 e 16.

Fonte: Do autor (2021)

Fonte: Do autor (2021)

Como foi possível notar na Fig. 15, as máximas tensões estão localizadas nos furos de fixação, portanto seria naquele local que o material começaria a falhar. Porém é possível perceber que existe uma tensão alta no local próximo ao ponto B.

Já a Fig. 16 demonstra a deformação máxima, que é um item muito importante para a rigidez no momento do grampeamento.

Os valores das soluções obtidas através da simulação para as tensões de von-Mises e deformação máxima estão expostas na Tab. 8.

Tabela 8: Soluções retiradas da análise

pelo software de simulação numérica.		
Soluções da seção transversal	Valores	
Deformação máxima (mm)	0,055	
σ von – Mises próximo ao ponto B (MPa)	106,04	
σ von – Mises nos furos da haste (MPa)	112,32	
Fonte: Do autor (2021)		

A Tab. 9 demonstra uma comparação entre os resultados obtidos através dos cálculos analiticos e pela simulação.

Tabela 9: Comparação dos resultados analíticos e da simulação.

Soluções da seção transversal	Valores obtidos analiticamente	Valores obtidos pela simulação	Diferença (%)
σvon – Mises no ponto B (MPa)	108,95	106,04	2,7%
Fonte: Do autor (2021)			

5 CONCLUSÕES

Atualmente, a área da seção transversal utilizada no projeto original é de cerca de 1600 mm², portanto houve uma redução de cerca de 27% na área da seção da peça finalizada, tornando assim a peça mais leve, resultanto em um custo de produção mais baixo, pois a matéria prima adquirida para a produção no projeto original era uma chapa cortada de largura de 42 mm e espessura 44,45 mm e agora será de 36 mm de largura por 38,1 mm de espessura, resultando em uma diminuição de cerca de 26,5% na área da seção e na massa do material bruto. Proporcionando uma redução de custo estimado na aquisição da matéria prima de aproximadamente de 1,3 kg por peça e de R\$2400,00 por ano.

A análise feita pelo *software* de simulação númerica demonstrou que houve uma diferença entre as tensões no ponto B calculados analiticamente e obtidos através da simulação. Está diferença pode ser proveniente por dois fatores. Os furos que enfrequecem a estrutura e que na simulação o ponto analisado não estava

localizado exatamente no ponto B. Outro resultado bem importante que a análise feita pelo *software* proporcionou, é que a deformação máxima da tala transversal se demonstrou na ordem dos centésimos de milimetro, resultando em uma boa rigidez que é nessária para o pressionamento da moldura no momento do grampeamento.

Futuramente, é esperado a realização de testes praticos, em um protótipo afim de validar os resultados obtidos.

REFERÊNCIAS

AMÉRICO, Tiago. Falta de aço e cimento cria gargalo para a retomada do setor de infraestrutura. **CNN Brasil**, São Paulo, 16 de jun. de 2021. Disponível em: www.cnnbrasil.com.br/business/falta-de-aco-e-cimento-cria-gargalo-para-retomada-do-setor-de-infraestrutura/.Acesso em: 29 ago. 2021.

Ansys, Meshing application introduction. Appendix A – Mesh Quality. Abril, 2019

BEER, F, P; JOHNSTON, E, R. **Resistência dos materiais.** 3. Ed. São Paulo, SP: Pearson Makron Books, 1995.

HIBBLER, Russel Charles. **Resistência dos materiais.** 7. Ed. São Paulo, SP: Pearson Prentice Hall, 2010.

MANUAL de aços. **Gerdau**, 2003. Disponível em: https://www.feis.unesp.br/Home/departamentos/engenhariamecanica/maprotec/catal ogo_acos_gerdau.pdf. Acesso em: 29 ago. 2021.

MICROAUTOMAÇÃO. Manual Técnico Master, [S.I.], 2015

NORTON, R, L. **Projeto de máquinas: uma abordagem integrada.** 4. Ed. Porto Alegre, RS: Editora Bookman, 2013.

AGRADECIMENTOS

Ao meu orientador Dr. Alexandre Milanez pelos conhecimentos e apoio a mim transmitidos para a produção do presente artigo. Ao professor José Luiz Salvador pela visão crítica que foi determinante para o aprimoramento do trabalho. À minha família pelo incentivo e a todos que de alguma forma contribuíram para a realização do presente trabalho.